Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Quantitative Imaging Study of the Effects of Intake Air Temperature on Soot Evolution in an Optically-Accessible D.I. Diesel Engine

1994-10-01
942044
Simultaneous laser-induced incandescence and light scattering measurements were used to obtain images of the evolving soot field within an optically-accessible DI diesel engine. Optimum signal collection parameters were established based on preliminary measurements in an ethylene diffusion flame. The effects of intake air temperature on soot formation during diesel combustion were investigated. Although increased soot production was evident for the higher intake air temperature cases, local particle diameters and number densities of the soot were unaffected for each of the cases tested.
Technical Paper

Quantitative 2-D Fuel Vapor Concentration Imaging in a Firing D.I. Diesel Engine Using Planar Laser-Induced Rayleigh Scattering*

1994-03-01
940682
The application of planar laser-induced Rayleigh scattering for quantitative 2-D measurements of vapor-phase fuel concentration in the main combustion zone of a direct-injection Diesel engine has been explored, developed and demonstrated. All studies were conducted in an optically accessible direct-injection Diesel engine of the “heavy-duty” size class at 1200 rpm and motored TDC conditions which were typical of the production version of this engine. First, this study verifies that beyond 27 mm from the injector all the fuel is vapor phase. This was done by investigating the Diesel jet under high magnification using 2-D elastic scatter imaging and subsequently evaluating the signal intensities from the droplets and other interfering particles (Mie scattering) and the vapor (Rayleigh scattering).
Technical Paper

Potential of Thermal Stratification and Combustion Retard for Reducing Pressure-Rise Rates in HCCI Engines, Based on Multi-Zone Modeling and Experiments

2005-04-11
2005-01-0113
This work investigates the potential of in-cylinder thermal stratification for reducing the pressure-rise rate in HCCI engines, and the coupling between thermal stratification and combustion-phasing retard. A combination of computational and experimental results is employed. The computations were conducted using both a custom multi-zone version and the standard single-zone version of the Senkin application of the CHEMKIN III kinetics-rate code, and kinetic mechanisms for iso-octane. This study shows that the potential for extending the high-load operating limit by adjusting the thermal stratification is very large. With appropriate stratification, even a stoichiometric charge can be combusted with low pressure-rise rates, giving an output of 16 bar IMEPg for naturally aspirated operation. For more typical HCCI fueling rates (ϕ = 0.38 - 0.45), the optimal charge-temperature distribution is found to depend on both the amount of fuel and the combustion phasing.
Technical Paper

Planar Laser Light Scattering for the In-Cylinder Study of Soot in a Diesel Engine

1990-10-01
902125
A study has been experimentally conducted in an optically-accessible DI Diesel engine operating on 50/50 mixture of iso-octane and tetradecane to evaluate a planar laser light scattering technique for the in-cylinder study of soot. Two simultaneous images, taken with vertically and horizontally polarized scattered light, were used to determine the polarization ratio, CHH/CW. This magnitude of the polarization ratio was employed to distinguish soot particles from fuel droplets. The spatial and temporal variations of soot during the combustion cycle were investigated with images taken at various crank angles and swirl levels at three different planes in the combustion bowl. For the high swirl case, soot was uniformly distributed in the combustion bowl. For the non-swirl case, however, soot was mainly observed near the wall and at the top plane, and was observed to exist later into the expansion stroke.
Journal Article

Partial Fuel Stratification to Control HCCI Heat Release Rates: Fuel Composition and Other Factors Affecting Pre-Ignition Reactions of Two-Stage Ignition Fuels

2011-04-12
2011-01-1359
Homogeneous charge compression ignition (HCCI) combustion with fully premixed charge is severely limited at high-load operation due to the rapid pressure-rise rates (PRR) which can lead to engine knock and potential engine damage. Recent studies have shown that two-stage ignition fuels possess a significant potential to reduce the combustion heat release rate, thus enabling higher load without knock. This study focuses on three factors, engine speed, intake temperature, and fuel composition, that can affect the pre-ignition processes of two-stage fuels and consequently affect their performance with partial fuel stratification. A model fuel consisting of 73 vol.% isooctane and 27 vol.% of n-heptane (PRF73), which was previously compared against neat isooctane to demonstrate the superior performance of two-stage fuels over single-stage fuels with partial fuel stratification, was first used to study the effects of engine speed and intake temperature.
Journal Article

PLIF Measurements of Thermal Stratification in an HCCI Engine under Fired Operation

2011-04-12
2011-01-1291
Tracer-based PLIF temperature diagnostics have been used to study the distribution and evolution of naturally occurring thermal stratification (TS) in an HCCI engine under fired and motored operation. PLIF measurements, performed with two excitation wavelengths (277, 308 nm) and 3-pentanone as a tracer, allowed investigation of TS development under relevant fired conditions. Two-line PLIF measurements of temperature and composition were first performed to track the mixing of the fresh charge and hot residuals during intake and early compression strokes. Results showed that mixing occurs rapidly with no measureable mixture stratification remaining by early compression (220°CA aTDC), confirming that the residual mixing is not a leading cause of thermal stratification for low-residual (4-6%) engines with conventional valve timing.
Technical Paper

PLIF Imaging of NO Formation in a DI Diesel Engine1

1998-02-01
980147
NO formation during direct-injection (DI) diesel combustion has been investigated using planar laser-induced fluorescence (PLIF) imaging. Measurements were made at a typical medium-speed operating condition in a heavy-duty size-class engine modified for optical access. By combining a unique laser system with a particular spectroscopic scheme, single-shot NO images were obtained at realistic operating conditions with negligible O2 interference. Temporal sequences of NO PLIF images are presented along with corresponding images of combined elastic scattering and natural luminosity. These images show the location and timing of the NO formation relative to the other components of the reacting fuel jet. In addition, total NO formation was examined by integrating the NO PLIF signal over a large fraction of the combustion-chamber volume.
Technical Paper

OH Radical Imaging in a DI Diesel Engine and the Structure of the Early Diffusion Flame

1996-02-01
960831
Laser-sheet imaging studies have considerably advanced our understanding of diesel combustion; however, the location on and nature of the flame zones within the combusting fuel jet have been largely unstudied. To address this issue, planar laser-induced fluorescence (PLIF) imaging of the OH radical has been applied to the reacting fuel jet of a direct-injection diesel engine of the “heavy-duty” size class, modified for optical access. An Nd:YAG-based laser system was used to pump the overlapping Q19 and Q28 lines of the (1,0) band of the A→X transition at 284.01 nm, while the fluorescent emission from both the (0,0) and (1,1) bands (308 to 320 nm) was imaged with an intensified video camera. This scheme allowed rejection of elastically scattered laser light, PAH fluorescence, and laser-induced incandescence. OH PLIF is shown to be an excellent diagnostic for diesel diffusion flames.
Technical Paper

Neat Methanol Combustion in a D.I. Diesel Engine Using Catalytically Coated Glow Plugs

1991-10-01
912418
Enhancement of methanol combustion in a direct injected Diesel engine using catalytically coated glow plugs was examined for platinum and palladium catalysts and compared to a non-catalytic baseline case. Experiments were performed for 6 and 10 brake Kilowatts (bKW) at 2500 rpm. Comparisons were made based on combustion, performance, and emissions including carbon monoxide (CO), oxides of nitrogen (NOx), unburned hydrocarbons (UHC), unburned methanol (UBM), and aldehydes. Results show a decrease in glow plug temperature of 100 K is achievable using platinum catalysts, and 150 K for palladium. Furthermore, the palladium catalyst was found to provide better combustion characteristics than the platinum catalyst. Also, the use of both catalysts produced lower aldehyde emissions, and the palladium reduced NOx emissions as well. However, unburned methanol increased for both catalytic glow plugs with respect to the non-catalytic case.
Journal Article

Multiple-Event Fuel Injection Investigations in a Highly-Dilute Diesel Low Temperature Combustion Regime

2009-04-20
2009-01-0925
The objective of this research is a detailed investigation of multiple injections in a highly-dilute diesel low temperature combustion (LTC) regime. This research concentrates on understanding the performance and emissions benefits of multiple injections via experiments and simulations in a 0.48L signal cylinder light-duty engine operating at 2000 r/min and 5.5 bar IMEP. Controlled experiments in the single-cylinder engine are then combined with three computational tools, namely heat release analysis of measured cylinder pressure, a phenomenological spray model using in-cylinder thermodynamics [1], and KIVA-3V Chemkin CFD computations recently tested at LTC conditions [2]. This study examines the effects of fuel split distribution, injection event timing, rail pressure, and boost pressure which are each explored within a defined operation range in LTC.
Technical Paper

Modeling Iso-octane HCCI Using CFD with Multi-Zone Detailed Chemistry; Comparison to Detailed Speciation Data Over a Range of Lean Equivalence Ratios

2008-04-14
2008-01-0047
Multi-zone CFD simulations with detailed kinetics were used to model iso-octane HCCI experiments performed on a single-cylinder research engine. The modeling goals were to validate the method (multi-zone combustion modeling) and the reaction mechanism (LLNL 857 species iso-octane) by comparing model results to detailed exhaust speciation data, which was obtained with gas chromatography. The model is compared to experiments run at 1200 RPM and 1.35 bar boost pressure over an equivalence ratio range from 0.08 to 0.28. Fuel was introduced far upstream to ensure fuel and air homogeneity prior to entering the 13.8:1 compression ratio, shallow-bowl combustion chamber of this 4-stroke engine. The CFD grid incorporated a very detailed representation of the crevices, including the top-land ring crevice and head-gasket crevice. The ring crevice is resolved all the way into the ring pocket volume. The detailed grid was required to capture regions where emission species are formed and retained.
Technical Paper

Minimum Engine Flame Temperature Impacts on Diesel and Spark-Ignition Engine NOx Production

2000-03-06
2000-01-1177
Empirical and analytical data on the minimum possible flame temperatures for combustion processes rapid enough to be effective for engine operation are presented. The fundamental basis for these minimum temperatures is explored with chemical kinetic analysis. The combination of these minimum temperatures and the time scales associated with engine processes yield minimum possible levels of in-cylinder NOx production for both diesel and spark-ignition engines. These minimum NOx levels are identified and validated empirically. Legislated NOx levels lower than those indicated will require exhaust aftertreatment in addition to in-cylinder combustion control.
Journal Article

Late Intake Valve Closing as an Emissions Control Strategy at Tier 2 Bin 5 Engine-Out NOx Level

2008-04-14
2008-01-0637
A fully flexible valve actuation (FFVA) system was developed for a single cylinder research engine to investigate high efficiency clean combustion (HECC) in a diesel engine. The main objectives of the study were to examine the emissions, performance, and combustion characteristics of the engine using late intake valve closing (LIVC) to determine the benefits and limitations of this strategy to meet Tier 2 Bin 5 NOx requirements without after-treatment. The most significant benefit of LIVC is a reduction in particulates due to the longer ignition delay time and a subsequent reduction in local fuel rich combustion zones. More than a 95% reduction in particulates was observed at some operating conditions. Combustion noise was also reduced at low and medium loads due to slower heat release. Although it is difficult to assess the fuel economy benefits of LIVC using a single cylinder engine, LIVC shows the potential to improve the fuel economy through several approaches.
Technical Paper

Isolating the Effects of Fuel Chemistry on Combustion Phasing in an HCCI Engine and the Potential of Fuel Stratification for Ignition Control

2004-03-08
2004-01-0557
An investigation has been conducted to determine the relative magnitude of the various factors that cause changes in combustion phasing (or required intake temperature) with changes in fueling rate in HCCI engines. These factors include: fuel autoignition chemistry and thermodynamic properties (referred to as fuel chemistry), combustion duration, wall temperatures, residuals, and heat/cooling during induction. Based on the insight gained from these results, the potential of fuel stratification to control combustion phasing was also investigated. The experiments were conducted in a single-cylinder HCCI engine at 1200 rpm using a GDI-type fuel injector. Engine operation was altered in a series of steps to suppress each of the factors affecting combustion phasing with changes in fueling rate, leaving only the effect of fuel chemistry.
Journal Article

Isolating the Effects of EGR on HCCI Heat-Release Rates and NOX Emissions

2009-11-02
2009-01-2665
High-load HCCI operation is typically limited by rapid pressure-rise rates (PRR) and engine knock caused by an overly rapid heat-release rate (HRR). Exhaust gas recirculation (EGR) is commonly used in HCCI engines, and it is often stated in the literature that charge dilution with EGR (or high levels of retained residuals) is beneficial for reducing the PRR to allow higher loads without knock. However, EGR/retained-residuals affect other operating parameters such as combustion phasing, which can in turn influence the PRR independently from any effect of the EGR gases themselves. Because of the multiple effects of EGR, its direct benefit for reducing the PRR is not well understood. In this work, the effects of EGR on the PRR were isolated by controlling the combustion phasing independently from the EGR addition by adjusting the intake temperature. The experiments were conducted using gasoline as the fuel at a 1200 rpm operating condition.
Journal Article

Investigation of the Sources of Combustion Noise in HCCI Engines

2014-04-01
2014-01-1272
This article presents an investigation of the sources combustion-generated noise and its measurement in HCCI engines. Two cylinder-pressure derived parameters, the Combustion Noise Level (CNL) and the Ringing Intensity (RI), that are commonly used to establish limits of acceptable operation are compared along with spectral analyses of the pressure traces. This study focuses on explaining the differences between these two parameters and on investigating the sensitivity of the CNL to the ringing/knock phenomenon, to which the human ear is quite sensitive. Then, the effects of independently varying engine operating conditions such as fueling rate, boost pressure, and speed on both the CNL and RI are studied. Results show that the CNL is not significantly affected by the high-frequency components related to the ringing/knock phenomenon.
Technical Paper

Investigation of Mixing and Temperature Effects on HC/CO Emissions for Highly Dilute Low Temperature Combustion in a Light Duty Diesel Engine

2007-04-16
2007-01-0193
There is a significant global effort to study low temperature combustion (LTC) as a tool to achieve stringent emission standards with future light duty diesel engines. LTC utilizes high levels of dilution (i.e., EGR > 60% with <10%O2 in the intake charge) to reduce overall combustion temperatures and to lengthen ignition delay, This increased ignition delay provides time for fuel evaporation and reduces in-homogeneities in the reactant mixture, thus reducing NOx formation from local temperature spikes and soot formation from locally rich mixtures. However, as dilution is increased to the limits, HC and CO can significantly increase. Recent research suggests that CO emissions during LTC result from the incomplete combustion of under-mixed fuel and charge gas occurring after the premixed burn period [1, 2]1. The objective of the present work was to increase understanding of the HC/CO emission mechanisms in LTC at part-load.
Journal Article

Investigating the Development of Thermal Stratification from the Near-Wall Regions to the Bulk-Gas in an HCCI Engine with Planar Imaging Thermometry

2012-04-16
2012-01-1111
A tracer-based single-line PLIF imaging technique using a unique optical configuration that allows simultaneously viewing the bulk-gas and the boundary layer region has been applied to an investigation of the naturally occurring thermal stratification in a HCCI engine. Thermal stratification is critical for HCCI engines, because it determines the maximum pressure rise rate which is a limiting factor for high-load operation. The investigation is based on the analysis of temperature maps that were derived from PLIF images, using the temperature sensitivity of fluorescence from toluene introduced as tracer in the fuel. Measurements were made in a single-cylinder optically accessible HCCI engine operating under motored conditions with a vertical laser-sheet orientation that allows observation of the development of thermal stratification from the cold boundary layers into the central region of the charge.
Journal Article

Influence of Fuel Autoignition Reactivity on the High-Load Limits of HCCI Engines

2008-04-14
2008-01-0054
This work explores the high-load limits of HCCI for naturally aspirated operation. This is done for three fuels with various autoignition reactivity: iso-octane, PRF80, and PRF60. The experiments were conducted in a single-cylinder HCCI research engine (0.98 liter displacement), mostly with a CR = 14 piston installed, but with some tests at CR = 18. Five load-limiting factors were identified: 1) NOx-induced combustion-phasing run-away, 2) wall-heating-induced run-away, 3) EGR-induced oxygen deprivation, 4) wandering unsteady combustion, and 5) excessive exhaust NOx. These experiments at 1200 rpm show that the actual load-limiting factor is dependent on the autoignition reactivity of the fuel, the selected CA50, and in some cases, the tolerable level of NOx emissions. For iso-octane, which has the highest resistance to autoignition of the fuels tested, the NOx emissions become unacceptable at IMEPg = 473 kPa.
Journal Article

Influence of EGR Quality and Unmixedness on the High-Load Limits of HCCI Engines

2009-04-20
2009-01-0666
This work explores how the high-load limits of HCCI are affected by fuel autoignition reactivity, EGR quality/composition, and EGR unmixedness for naturally aspirated conditions. This is done for PRF80 and PRF60. The experiments were conducted in a single-cylinder HCCI research engine (0.98 liters) with a CR = 14 piston installed. By operating at successively higher engine loads, five load-limiting factors were identified for these fuels: 1) Residual-NOx-induced run-away advancement of the combustion phasing, 2) EGR-NOx-induced run-away, 3) EGR-NOx/wall-heating induced run-away 4) EGR-induced oxygen deprivation, and 5) excessive partial-burn occurrence due to EGR unmixedness. The actual load-limiting factor is dependent on the autoignition reactivity of the fuel, the EGR quality level (where high quality refers to the absence of trace species like NO, HC and CO, i.e. simulated EGR), the level of EGR unmixedness, and the selected pressure-rise rate (PRR).
X